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Agenda
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* Regression from a causal perspective
* Back-door criterion

* Regression in R
* DAGs in R




Ordinary Least Squares (OLS)
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* Minimizing sum of squares of
residuals (differences between
observed and predicted values)

* Finding the best (linear) guess
for y given a particular x value
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https://seeing-theory.brown.edu/regression-analysis/index.html




Regression Coefficients
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Calculation of intercept (35 = / — [3;X

Y value given X=0

Calculation of slope ~ cov(X,y) Y(Xi—-Xx)(vi-V)
91 — — —
ncreases by Luntt var(x) X(Xi = X)?

(in bivariate regression)
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Omitted Variable Bias (OVB)
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 Bivariate relationships can be confounded by other variables
* Occurs when Zis a common cause of both Xand Y

—2Include Z in regression to (partially) deal with the issue

Multiple Regression




Multiple Regression
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Multiple regression only uses the unique variation in each regressor (X;) not explained
by other regressors A
A 2. FinYi

Thus, 3, can be estimated by 3 = =
S Th
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where r is the residual from a regression of C, on the other explanatory variables
riy is c;; after the effects of c;(and d,) have been “partialled out”
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Regression from a POF perspective
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* Regression can be utilized without thinking about causes as a predictive or
summarizing tool.

* |t would not be appropriate to give causal interpretations to any, unless we
establish the fulfilment of certain assumptions.

] E(Y’|D =0) =
Y = Bo +H 51D +le; | E(Y'|D =1) = Bo + B
By E(Y'|D=1)-E(Y’|D=0)
- NATE
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Regression Error Terms
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y/' - 7)0 + 5]D T ell # Y‘v — ."),() + ))]X + r‘,

* Error term in causal perspective: * regression residual r, which is
“‘summary” random variable uncorrelated with the regressors
representing all causes other by construction
than D (and other modeled
regressors)

- Only if D and e were independent (e.g., due to random assignment of D),
the regression estimate of 3, could be given a causal interpretation /B, = ATE
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Back to OVB
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* Violations of the assumption that D and e are independent:
- OVB problem

“true” causal model:  Yi=Po+ D+ 522 + e,
Fitted empirical model: Y, = v, + 1D, + 1,
Relationship between Zand D: 7, = 65 + 64D, + U,

OVB: 71— /1= /3017 - doesZinfluence Y? 3,
—> does Z influence D? §,
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Tackling OVB with Regression
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* “Control for” / “Condition on” confounders by
including them in the model

confounder

* find the factors responsible for different baseline
values (or differential treatment effects), and to /q
include these variables in the equation in the hope
that an unbiased estimate of 3, is obtained

|

* But: we need to include all relevant covariates and

there has to be a large enough overlap in covariate
values across different values of D (“common

D&EZDY

support”) “Fork”




Selecting Covariates
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* Draw DAG
* Write down all paths between D and Y

* |dentify conditions that satisfy back-door-
criterion

e Control for the identified variables in model

* Only interpret D causally! The status of
covariates is path-specific
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Back-door criterion
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* Potential shortcut to formal adjustment criterion

* Focus on non-causal paths that start with an arrow into D (back-
door-paths)

* To identify the total effect of D on Y, you need to condition on
observed variables Z so that
* no element of Z is a descendant of D, and
» / blocks all back-door paths from Dto Y

« Remember: Confounders, Mediators, Colliders...
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Example 1
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Example 2
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Example 3
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Observed

Unobserved

o
T —0
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Further Resources
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For any coding issues - Stackoverflow
Hertie’s Data Science Lab - Research Consulting
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