Regression

Statistic Modeling & Causal Inference – Oswald | Ramirez-Ruiz

Agenda

- Regression from a causal perspective
- Back-door criterion
- Regression in R
- DAGs in R

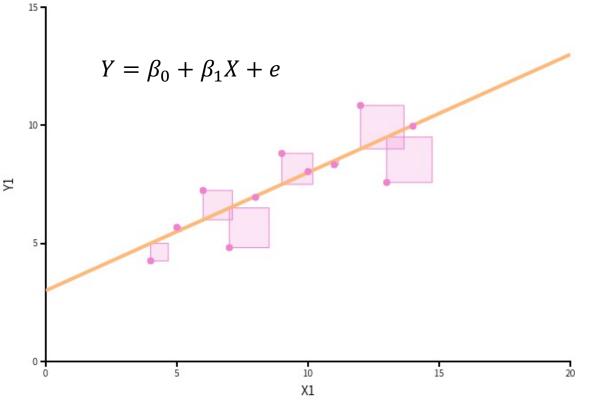
Ordinary Least Squares (OLS)

Statistical Modeling & Causal Inference

- Minimizing sum of squares of residuals (differences between observed and predicted values)
- Finding the best (linear) guess for y given a particular x value

Minimize

$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$



https://seeing-theory.brown.edu/regression-analysis/index.html

Regression Coefficients

Statistical Modeling & Causal Inference

Calculation of intercept
$$\hat{\beta}_0 = \bar{y} - \beta_1 \bar{y}$$

Y value given X = 0

Calculation of slope

How much does Y change when X increases by 1 unit

$$\hat{\beta}_1 = \frac{cov(x,y)}{var(x)} = \frac{\sum(x_i - \bar{x})(y_i - \bar{y})}{\sum(x_i - \bar{x})^2}$$

(in bivariate regression)

 $Y = \beta_0 + \beta_1 X + e$

Omitted Variable Bias (OVB)

Statistical Modeling & Causal Inference

- Bivariate relationships can be confounded by other variables
- Occurs when Z is a common cause of both X and Y

 \rightarrow Include Z in regression to (partially) deal with the issue

Multiple Regression

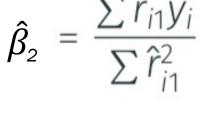
 $Y = \beta_0 + \beta_1 X + ??? + e$

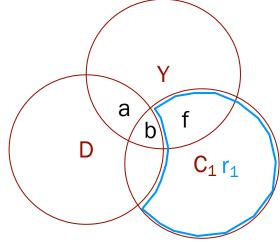
Multiple Regression

- Multiple regression only uses the unique variation in each regressor (X_i) not explained by other regressors
- Thus, β_2 can be estimated by

$$Y = \beta_0 + \beta_1 D + \beta_2 C_1 + e$$

 $Y = \beta_0 + \beta_1 D + \beta_2 C_1 + \beta_3 C_2 + \dots + e$





- r is the residual from a regression of C_1 on the other explanatory variables (in this case only D)
- r_{i1} is c_{i1} after the effects of d_i (and potentially all other c_{ij}) have been "partialled out"

Regression from a POF perspective

- Regression can be utilized without thinking about causes as a predictive or summarizing tool.
- It would not be appropriate to give causal interpretations to any, unless we establish the fulfilment of certain assumptions.

$$\begin{aligned} & E(Y^{0}|D=0) = \beta_{0} \\ & E(Y^{1}|D=1) = \beta_{0} + \beta_{1} \\ & \beta_{1} = E(Y^{1}|D=1) - E(Y^{0}|D=0) \\ & = NATE \end{aligned}$$

Regression Error Terms

$$Y_i = \beta_0 + \beta_1 D + e_i$$

 Error term in causal perspective: "summary" random variable representing all causes other than D (and other modeled regressors)

$$Y_i = \beta_0 + \beta_1 X + r_i$$

 regression residual r, which is uncorrelated with the regressors by construction

 \rightarrow Only if *D* and *e* were independent (e.g., due to random assignment of *D*), the regression estimate of β_1 could be given a causal interpretation $/\beta_1 = ATE$

#

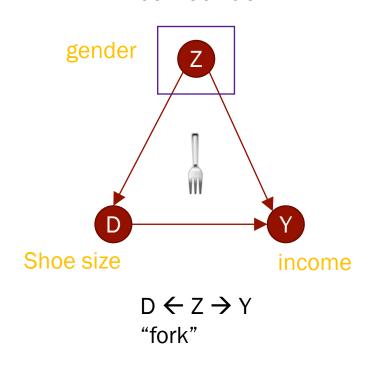
• Violations of the assumption that D and e are independent: \rightarrow OVB problem

"true" causal model: $Y_i = \beta_0 + \beta_1 D_i + \beta_2 Z_i + e_i$, Fitted empirical model: $Y_i = \gamma_0 + \gamma_1 D_i + r_i$ Relationship between Z and D: $D_i = \delta_0 + \delta_1 Z_i + u_i$ OVB: $\gamma_1 - \beta_1 = \beta_2 \delta_1 \rightarrow \text{does Z influence Y? } \beta_2$ $\rightarrow \text{does Z influence D? } \delta_1$

Tackling OVB with Regression

Statistical Modeling & Causal Inference

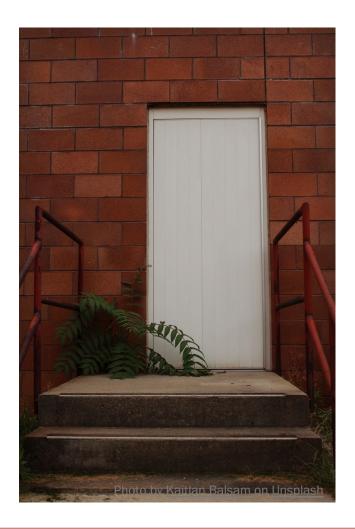
- "Control for" / "Condition on" confounders by including them in the model
- find the factors responsible for different baseline values (or differential treatment effects), and to include these variables in the equation in the hope that an unbiased estimate of β_1 is obtained
- But: we need to include all relevant covariates and there has to be a large enough overlap in covariate values across different values of D ("common support")



confounder

Selecting Covariates

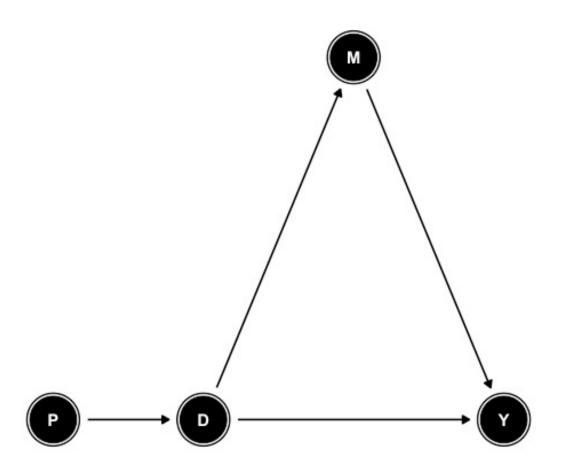
- Draw DAG
- Write down all paths between D and Y
- Identify conditions that satisfy back-doorcriterion
- Control for the identified variables in model
- Only interpret D causally! The status of covariates is path-specific



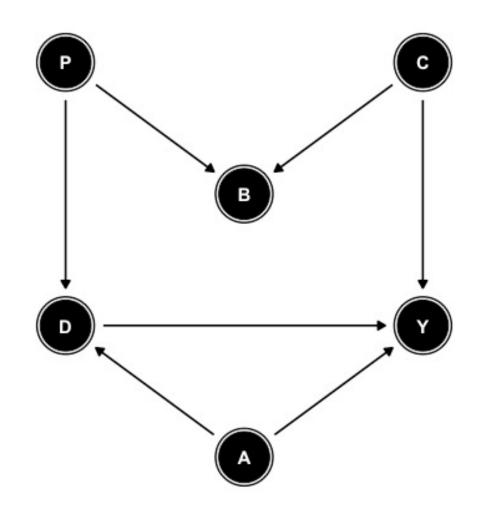
Back-door criterion

- Potential shortcut to formal adjustment criterion
- Focus on non-causal paths that start with an arrow into D (backdoor-paths)
- To identify the total effect of *D* on *Y*, you need to condition on observed variables *Z* so that
 - no element of *Z* is a descendant of *D*, and
 - Z blocks all back-door paths from D to Y
- Remember: Confounders, Mediators, Colliders...

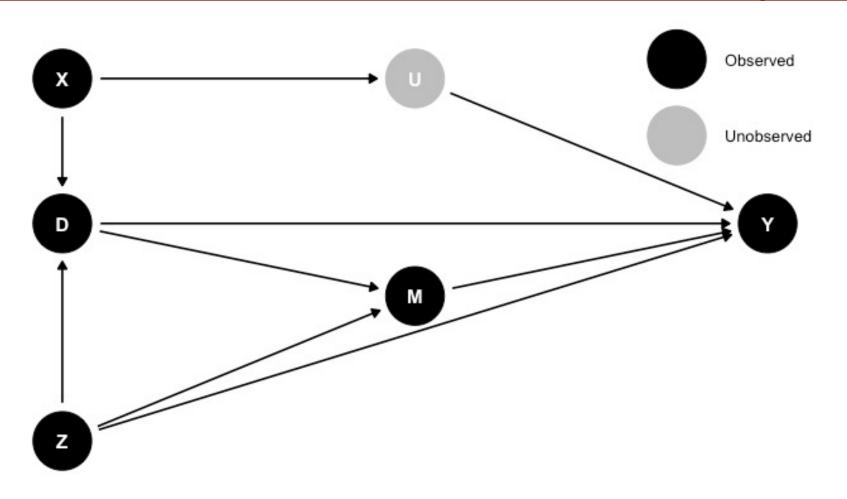
Example 1



Example 2



Example 3



Further Ressources

Statistical Modeling & Causal Inference

For any coding issues – <u>Stackoverflow</u> Hertie's Data Science Lab – <u>Research Consulting</u>