Instrumental Variables

Statistic Modeling & Causal Inference

Statistical Modeling & Causal Inference

- Lecture review
- ITT and LATE
- Assumptions for IV designs
- Estimating LATE in R

Motivation

Experiments

Observational Studies

- It is often not possible to force subjects to comply with their assignment to treatment/control.
- Those who choose to take the treatment may systematically differ from those who do not (selection bias)
- Often the relationships between our variables of interest are affected by confounders that are unmeasured or unmeasurable.

Statistical Modeling & Causal Inference

• We can exploit natural experiments that generate (as if) random variation in our independent variable in order to estimate causal effects.

Instrumental Variable

Statistical Modeling & Causal Inference

General Idea

 In order to bypass the problems of noncompliance and confounders, use an exogenous variable (Z) that affects the treatment or independent variable (D) but is not affected by confounders (U).

Practical Procedure

- We split the variation of D into two parts:
- One potentially related to confounders (U), observed or unobserved.
- One truly exogenous

Requirements for a valid IV

1. Z must indeed affect D (relevant)

- 2. Z must be **exogenous**, not a descendent of confounders. It must be as if randomly assigned.
- 3. Z must only affect Y through D (exclusion restriction)

Intent to Treat Effect (ITT)

Statistical Modeling & Causal Inference

- ITT is the effect of the instrumental variable itself on the outcome, regardless of actual treatment. It only considers *assignment* to the treatment or control groups.
- Because Z is randomized, ITT is identified by the difference in means of the outcome of interest between those assigned to treatment and those not.

$$ITT = E(Y_i | Z_i = 1) - E(Y_i | Z_i = 0)$$

Compliance Types

Statistical Modeling & Causal Inference

- Some people will always take the treatment, regardless of whether they are in treatment or control (always-takers),
- and some never will (never-takers).
- Some will always do as their told (compliers),
- and some will always do the opposite (defiers).

	$Z_i = 0$	$Z_i = 1$
$D_i = 0$	Complier/Never-taker	Defier/Never-taker
$D_i = 1$	Defier/Always-taker	Complier/Always-taker

We cannot directly identify the group to which any particular respondent belongs.

Formal IV Assumptions

Statistical Modeling & Causal Inference

Relevance or nonzero average encouragement effect.

- Encouragement needs to make a difference.
- **Testable**: observe differences between treatment and control groups (**first stage**)

Exogeneity or ignorability of the instrument.

- Hypothetical potential outcomes must be independent from Z.
- Given by quasi-randomization of encouragement. Not empirically testable. A matter of plausibility.

Formal IV Assumptions

Statistical Modeling & Causal Inference

Exclusion restriction: instrument affects outcome **only** via treatment.

- Implies zero ITT effect for always-takers/nevertakers.
- Hardly testable! (placebo/falsification criterion)

Monotonicity: effect of treatment is only in one direction.

- Implies we assume there are no defiers.
- Also hardly testable; matter of plausibility

SUTVA: no spillovers

Homogeneity: constant treatment effect assumption

LATE Local Average Treatment Effect (here with binary D and Y)

Statistical Modeling & Causal Inference

ITT can be decomposed into different subgroups:

ITT = The intent to treat for compliers + ITT for always-takers + ITT for never-takers + ITT for defiers

Under the monotonicity and exclusion restriction, this simplifies to:

 $ITT = ITT_{compliers} \times Pr(compliers)$

 \rightarrow ITT_{compliers} can then be interpreted as LATE:

$$ITT_c = \frac{ITT}{\Pr(compliers)} = LATE$$

Estimating LATE

Statistical Modeling & Causal Inference

"By hand"

Using the Wald estimator

LATE =
$$\frac{\text{Cov}(Y_i, Z_i)}{\text{Cov}(D_i, Z_i)}$$
 or
=
$$\frac{E(Y_i | Z_i = 1) - E(Y_i | Z_i = 0)}{E(D_i | Z_i = 1) - E(D_i | Z_i = 0)}$$

(Be careful to weight the expected outcomes with the observed number of observations)

Two-stage least squares (2SLS)

A sequence of two regressions

- **1.** First stage: Regress treatment D on instrument Z $\rightarrow D = \gamma_0 + \gamma_0 Z_i + v_i$
- Calculate predicted values (D-hat) of first stage regression.
- 2. Regress outcome Y on predicted values (D-hat).

 $\longrightarrow Y_i = \beta_0 + \beta^{2sls} \hat{D} + u_i$

The regression coefficient of D-hat is the LATE estimator. It only retains the variation in D that is generated by (as if) random variation in Z: the portion of the variation in D that we wanted to isolate!

Statistical Modeling & Causal Inference

For any coding issues – <u>Stackoverflow</u> Hertie's Data Science Lab – <u>Research Consulting</u>