Difference in Difference

Statistic Modeling & Causal Inference | Oswald & Ramirez-Ruiz

Statistical Modeling & Causal Inference – Oswald | Ramirez-Ruiz

- Lecture review
 - Unit and Time comparisons
 - Difference in Difference
 - Parallel Trends Assumption
 - Estimation & Interpretation
- Diff-in-diff in R

Motivation

- Until now: focus on treatment / control comparison without consideration of time
- Time important for causality: cause always precedes the effect
- By considering both, units and time, we can:
 - Compare individuals to themselves, to account for units' characteristics that affect both outcome and treatment (~ permanent differences between groups).
 - Compare how outcomes for different units change across time, to account for characteristics of different periods (~ trends in Y that affect all units, regardless of treatment).

Effect of COVID-19 on electoral outcomes

- Focus: municipal elections in Bavaria in March 2020 (Leininger & Schaub, 2020)
- Treatment: cases per county
- Outcome: CSU vote shares
- Comparison over time: 2014 and 2020
- Comparison between units: two different Counties

https://www.wahlenmuenchen.de/ergebnisse/20200315stadtratswahl/index.html#w_8117_18028

Unit & Time Comparisons

Statistical Modeling & Causal Inference – Oswald | Ramirez-Ruiz

Assume we have a data set with **two outcome measurements:** before and after treatment. As usual, we have a problem of not knowing **counterfactuals**. We could:

Compare before and after treatment for the treatment group CSU vote shares Y_{2020} Y_{2014} D Unit 38.5 County A 42.1 n County B 41.2 40.2

This assumes no change in average PO over time.

or

Difference-in-Difference

Statistical Modeling & Causal Inference – Oswald | Ramirez-Ruiz

Difference-in-Difference

- Main idea:
 - Sometimes treatment and control units move in parallel in the absence of treatment.
 - When they do, we can see how much do the treated units diverge from the post-treatment expected path, compared to the control units.
 - We can estimate the treatment effect as the divergence from the expected outcome of the treatment group in the absence of treatment.

$$Y_{it} = \beta_0 + \beta_1 D_i^* + \beta_2 P_t + \beta_{DD} D_i^* \times P_t + \beta_{DD} D_i^*$$

Interaction Effect

Parallel Trends Assumption

- Use the overtime difference in the control group as a counterfactual
- Assume that observed overtime changes in the control group reflect, on average, unobserved changes in the treatment group in the absence of treatment.

Estimating DiD

Statistical Modeling & Causal Inference – Oswald | Ramirez-Ruiz

- **1.** Manually, using average outcome values for subgroups defined by D and t. $DiD = \{E[Y_{1c}|D = 1, t = 1] - E[Y_{0c}|D = 0, t = 1]\} - \{E[Y_{1c}|D = 1, t = 0] - E[Y_{0c}|D = 0, t = 0]\}$
- 2. Calculate first differences and regress on D. \rightarrow wide format data

$$\Delta Y_{ct_0-t_1} = lpha + \delta D_c + \Delta_{v_c}$$

3. Regression formulation of the **DiD model**. \rightarrow long format data $Y_{it} = \beta_0 + \beta_1 D_i^* + \beta_2 P_t + \beta_{DD} D_i^* \times P_t + q_{it}$

Interpreting Results

Regression output:

	Share CSU
Treat	-1.03
	(1.56)
Post	-6.34***
	(0.72)
Treat imes Post	1.61**
	(0.79)
Intercept	40.76***
	(1.39)
N	192
R^2	0.16

D*	<i>t</i> = 0	t = 1	Difference
1	$\beta_0 + \beta_1$	$\beta_0 + \beta_1 + \beta_2 + \beta_{DD}$	$\beta_2 + \beta_{DD}$
0	β_0	$\beta_0 + \beta_2$	β_2
		Interaction E Unit x Time	ffect
Yit	$=\beta_0 + \beta_1$	$_1D_i^* + \beta_2P_t + \beta_{DD}D$	$P_i^* \times P_t + q_{it}$

Time

Main effect

Unit

Main effect

Data Formats

Statistical Modeling & Causal Inference – Oswald | Ramirez-Ruiz

Wide

Wide format table					
Unit c	Y_{c2014}	Y_{c2020}	D_c		
County A	42.1	38.5	0		
County B	41.2	40.2	1		

- Only one row per individual or unit.
- Outcome values included in different variables, by year.

Long

Long format table						
Unit c	Year t	Y_c	D_c			
County A	2014	42.1	0			
County A	2020	38.5	0			
County B	2014	41.2	1			
County B	2020	40.2	1			

- One column for every variable.
- One row for every unique observation

Parallel Trends Violations

Statistical Modeling & Causal Inference – Oswald | Ramirez-Ruiz

• Selection and Targeting

- Units may self-sort for reasons that are not random
- Policies may be targeted at units in a non-random way
- Compositional differences across time
 - The composition of a sample might change in ways that confound the treatment effect.
- Long-term effects vs. reliability
 - Parallel trends is more likely to hold in the short term.
- Functional form dependence
 - DD is more reliable if the treatment and control groups are more similar at baseline.

Parallel Trends Diagnostics

Statistical Modeling & Causal Inference – Oswald | Ramirez-Ruiz

- 1. Pre-treatment trends in the outcome
- 2. Placebo test using previous periods
- 3. Placebo test using alternative outcomes
- 4. Placebo outcomes

Further Resources

Statistical Modeling & Causal Inference – Oswald | Ramirez-Ruiz

For any coding issues – <u>Stackoverflow</u> Hertie's Data Science Lab – <u>Research Consulting</u>